References

 

Simulation strategy

  1. Amatore, C.; Klymenko, O.; Svir, I. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Principle. Electrochem. Commun. 12, 2010, 1170-1173.
  2. Klymenko, O.V.; Oleinick, A.; Svir, I.; Amatore, C. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution under spherical or cylindrical diffusion. Russ. J Electrochem. 48, 2012, 593-599.
  3. Klymenko, O.V.; Svir, I.; Oleinick, A.; Amatore, C. A novel approach to the simulation of electrochemical mechanisms involving acute reaction fronts at disk and band microelectrodes. ChemPhysChem 13, 2012, 845-859.
  4. Amatore, C.; Klymenko, O.V.; Svir, I. Importance of correct prediction of initial concentrations in voltammetric scans: Contrasting roles of thermodynamics, kinetics, and natural convection. Anal. Chem. 84, 2012, 2792-2798.
  5. Klymenko, O.V.; Svir, I.; Amatore, C. New theoretical insights into the competitive roles of electron transfers involving adsorbed and homogeneous phases. J. Electroanal. Chem. 688, 2013, 320-327.
  6. Klymenko, O.V.; Svir, I.; Amatore, C. Molecular electrochemistry and electrocatalysis : a dynamic view. Molecular Physics 112, 2014, 1273-1283.
  7. Oleinick, A.; Amatore, C.; Svir, I. Efficient quasi-conformal map for simulation of diffusion at disk microelectrodes. Electrochem. Commun. 6, 2004, 588-594.
  8. Amatore, C.; Oleinick, A.; Svir, I. Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: Principle of the method and its application to the inlaid disk microelectrode. J. Electroanal. Chem. 597, 2006, 69-76.

 

Applications

  1. Amatore, C.; Klymenko, O.; Svir, I. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Application to model mechanisms. Electrochem. Commun. 12, 2010, 1165-1169.
  2. Klymenko, O.; Amatore, C.; Svir, I. Theoretical study of the EE reaction mechanism with comproportionation and different diffusivities of reactants. Electrochem. Commun. 12, 2010, 1378-1382.
  3. Klymenko, O.V.; Svir, I.; Amatore, C. A new approach for the simulation of electrochemiluminescence (ECL). ChemPhysChem, 14, 2013, 2237-2250.
  4. Lorcy, D.; Guerro, M.; Bergamini, J.-F.; Hapiot, P. Vinylogous tetrathiafulvalene based podands: Complexation interferences on the molecular movements triggered by electron transfer. J. Phys. Chem. B 117, 2013, 5188-5194.
  5. Klymenko, O.V.; Buriez, O.; Labbe, E.; Zhan,D.-P.; Rondinini, S.; Tian, Z.-Q.; Svir, I.; Amatore, C. Uncovering a missing link between molecular electrochemistry and electrocatalysis: mechanism of benzyl chloride reduction at silver cathodes. ChemElectroChem 1, 2014, 227-240.
  6. Gutierrez, A.G.P.; Zeitouny, J.; Gomila, A.; Douziech, B.; Cosquer, N.; Conan, F.; Reinaud, O.; Hapiot, P.; Le Mest, Y.; Lagrost, C.; Le Poul, N. Insights into water coordination associated with the CuII/CuI electron transfer at a biomimetic Cu centre. Dalton Transactions 43, 2014, 6436-6445.
  7. Jalkh, J.; Leroux, Y. R.; Lagrost, C.; Hapiot, P. Comparative electrochemical investigations in ionic liquids and molecular solvents of a carbon surface modified by a redox monolayer. J. Phys. Chem. C 118/49, 2014, 28640-28646.
  8. Svir, I.; Oleinick, A.; Klymenko, O.V.; Amatore, C. Strong and unexpected effects of diffusion rates on electrochemiluminescence (ECL) generation by amine/transition metal(II) systems. ChemElectroChem 2(6), 2015, 811-818.
  9. Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence, Chem. Soc. Rev. 44(10), 2015, 3117.
  10. He, W. Y.; Fontmorin, J.-M.; Hapiot, P.; Soutrel, I.; Floner, D.; Fourcade, F.; Amrane, A.; Geneste, F. A new bipyridyl cobalt complex for 
    reductive dechlorination of pesticides. Electrochimica Acta 207, 2016, 313-320.
  11. Dickinson, E.J.F.; Ekström, H.; Fontes, E. COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. 
    Electrochem. Commun. 40, 2014, 71-74.
  12. Speiser, B. Organic Electrochemistry, 5-th Ed., Chap. 5. "Application of Digital Simulation", 2015, 205–227.
  13. Saveant, J.M. Molecular Electrochemistry: Recent Trends and Upcoming Challenges. ChemElectroChem 3, 2016, 1967-1977.
  14. Chen, R.; Balla, R.J.; Li, Z.; Liu, H.; Amemiya, S. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning 
    Electrochemical Microscopy: Contamination Not Adsorption. Anal. Chem. 88, 2016, 8323–8331.
  15. Oleinick, A.; Klymenko, O.V.; Svir, I.; Amatore, C. Theoretical Insights in ECL. Chap. 7 in book “Luminescence in Electrochemistry: 
    Applications in Analytical Chemistry, Physics and Biology”, Springer Int. Pub., 2017, p. 215-256.
  16. Daviddi, E.; Oleinick, A.; Svir, I.; Valenti, G.; Paolucci, F.; Amatore, C. Theory and simulation for optimizing electrogenerated 
    chemiluminescence from tris(2,2'-bipyridine)-ruthenium(II)-doped silica nanoparticles and tripropylamine. ChemElectroChem 4, 2017,
    1719-1730.
  17. Mulas, A., He, X., Hervault, Y.-M., Norel, L., Rigaut, S., Lagrost, C. Dual-Responsive Molecular Switches Based on Dithienylethene–RuII 
    Organometallics in Self-Assembled Monolayers Operating at Low Voltage. Chem.-Eur. J., 23, 2017, 10205-10214.
  18. Bkhach, S.; Aleveque, O.; Blanchard, P.; Gautier, C.; Levillain, E. Thienylene vinylene dimerization: from solution to self-assembled 
    monolayer on gold. Nanoscale 10, 2018, 1613-1616.
  19. Costentin, C.; Saveant, J.-M. Homogeneous Catalysis of Electrochemical Reactions: The Steady-State and Nonsteady-State Statuses 
    of Intermediates. ACS Catalysis 8, 2018, 5286-5297.
  20. Chen, R.; Najarian, A.M.; Kurapati, N.; Balla, R.J.; Oleinick, A.; Svir, I.; Amatore, C.; McCreery, R.L.; Amemiya, S. Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode. Anal. Chem., 90 (18), 2018, 11115–11123.
  21. Hijazi, H.; Vacher, A.; Groni, S.; Lorcy, D.; Levillain, E.; Fave, C.; Schöllhorn, B. Electrochemically driven interfacial halogen bonding on self-assembled monolayers for anion detection. Chem. Commun., 55, 2019, 1983-1986.
  22. Lemaire, A.; Hapiot, P.; Geneste, F. FranceTi-Catalyst Biomimetic Sensor for the Detection of Nitroaromatic Pollutants. Anal. Chem., 91 (4), 2019, 2797–2804.
  23. ENCYCLOPEDIA of ANALYTICAL SCIENCE. Eds.Paul Worsfold, Colin Poole, Alan Townshend and Manuel Miro. (Edition 3) 2019. Elsevier. Voltammetry/Cyclic Voltammetry of Organic Compounds by Robert J. Forster and Loanda R. Cumba. Volume 10, pp. 197-208.
  24. Alévêque, O.; Gautier, C.; Levillain, E. Real-time absorption spectroelectrochemistry: From solution to monolayer. Cur. Op. Electrochem., 15, 2019, 34-41.
  25. A. Mulas, G.V. Dubacheva, H. Al Sabea, F. Miomandre, J.-F. Audibert, L. Norel, S. Rigaut, C. Lagrost. Self-Assembled Monolayers of Redox-Active 4d–4f Heterobimetallic Complexes. Langmuir, 35(42), 2019, 13711-13717.
  26. N. Kurapati, P. Pathirathna, C. Ziegler, S. Amemiya. Adsorption and Electron‐Transfer Mechanisms of Ferrocene Carboxylates and Sulfonates at Highly Oriented Pyrolytic Graphite. ChemElectroChem, 6, 2019, 5651-5660.
  27. I. Svir, A. Oleinick, O.V. Klymenko, C. Amatore. Theoretical concepts underlying ECL generation. Chapter 5.  Book: “Analytical Electrogenerated  Chemiluminescence: from Fundamentals  to Bioassay”, Editor: Neso Sojic.  Royal Society Chemistry (UK) , 2020, pp. 134-158.
  28. X. Liu, M.M. Sartin, Y. Liu,Z-Q Tian, D. Zhan. Optimizing the interfacial electron transfer capability of single layer graphene by thermal annealing. Chem. Commun., 2020, 56, 253-265.
  29. E.C. Rivera, J.J. Swerdlow, R.L. Summerscales, P.P.T. Uppala, R.M. Filho, M.R.C. Neto, H.J. Kwon. Data-Driven Modeling of Smartphone-Based Electrochemiluminescence Sensor Data Using Artificial Intelligence. Sensors 2020, 20, 625.
  30. V. Shkirskiy, J. Billon, E. Levillain, C. Gautier. From monolayer to multilayer: perylenediimide diazonium derivative acting either as a growth inhibitor or a growth enhancer. Langmuir 2021, 37, 44, 12834–12841.
  31. I. López, N. Le Poul. Theoretical aspects of electrochemistry at low temperature. J. Electroanal. Chem. V. 887, 2021, 115160.
  32. C Fave, B Schöllhorn. Book: Halogen bonding in electrochemistry. Chapter 9. Halogen Bonding in Solution, 2021 - Wiley Online Library.
  33. D.C. Janda, K. Barma, N. Kurapati, O.V. Klymenko, A. Oleinick, I. Svir, C. Amatore, S. Amemiya . Systematic assessment of adsorption-coupled electron transfer toward voltammetric discrimination between concerted and non-concerted mechanisms. Electrochimica Acta V 428, 2022, 140912.